Wisconsin Retirement System

WRS Update:

1) Process of Setting Investment Return Assumption
2) WRS Analysis - Investment Return and Risk

December 2017

Process of Setting the Investment Return Assumption

Assumption Setting

- WRS uses a 3-year Experience Study cycle
- Investigates economic and demographic assumptions
- Upcoming experience study for 2015-2017 will be completed in 2018
- Investment return investigated
- Each experience study
- Reviewed during interim years by actuary
- Separate project with State of Wisconsin Investment Board (SWIB) every few years

Consulting

Investment Return Assumption

- Trends in investment return assumptions

Source: 2017 Public Plans Database

Investment Return Assumption

- Trends in investment return assumptions

Estimates of what investors needed to earn 7.5\%

	1995	2005	2015	
			12\%	Bonds
		52\%	33\%	U.S. Large Cap
	100\%		8\%	U.S. Small Cap
	Bonds	20\%	22\%	Non-U.S Equity
		5\%		
		14\%	13\%	Real Estate
		$\begin{aligned} & 5 \% \\ & \mathbf{4 \%} \end{aligned}$	12\%	Private Equity
Expected return	7.5\%	7.5\%	7.5\%	
Standard deviation*	6.0\%	8.9\%	17.2\%	

*Likely amount by which returns could vary

Investment Return Assumption

- The assumption selected should be reasonable
- May be no single "correct" answer
- Assumption selected using a process that is mainly based on economic capital market expectations using the Plan's target asset allocation:
- Utilize a building block approach that reflects expected inflation, real rates of return, and plan related expenses
- Take into account the volatility of the expected returns produced by the investment portfolio

Investment Return Assumption

Four Step Approach to Setting assumption

- Step 1 - Research and Adopt an Expected Price Inflation Assumption
- Many sources, currently around 2.5% or below
- Step 2 - Rely on formal Investment Forecasts by experts, including plan's consultant and potentially others
- Step 3 - Develop a Range of Reasonableness
- Step 4 - Consider Range of Reasonableness and Professional Judgment
- Select an investment return assumption which could be a single rate (most common for public sector funding), a "select and ultimate" rate, or even a yield curve

Guidance regarding the selection of economic assumptions for measuring pension obligations is provided by Actuarial Standards of Practice (ASOP) No. 27

Investment Return Assumption

Step 2 - Rely on formal Investment Forecasts by experts

- Rely on formal investment forecasts by experts:
- Obtain professional forward-looking capital market forecasts from experts - "investment economists"
- Such forecasts are usually for a 5 to 15 year horizon; some experts provide longer horizon forecasts
- Forward-looking capital market forecasts include:
- Expected returns for each asset class
- Expected standard deviations for each asset class
- Expected correlation coefficients among all asset classes

Investment Return Assumption

Step 3 - Develop a Range of Reasonableness - Example, not based on WRS

Mapping Case Study Plan's Asset Allocation to						
Sample Investment Consultant's (IC) List of Asset Classes		$	$		Case Study Plan's Asset Allocation	Sample IC's Expected Nominal Gross Return
:---:	:---:	:---:				
	-	9.35%				
Broad Dom Eq	32%	9.05%				
Large Cap	13%	10.55%				
Small/Mid Cap	15%	9.50%				
Int'l Equity	-	11.75%				
Emerging Mkts	-	10.06%				
Global ex-US Eq	-	3.25%				
Defensive	21%	3.80%				
Domestic Fixed	-	4.56%				
Long Duration	-	3.60%				
TIPS	-	6.15%				
High Yield	4%	3.75%				
Non-US\$ Fixed	10%	7.85%				
Real Estate	-	13.10%				
Private Equity	-	6.25%				
Absolute Return	-	6.50%				
Commodities	5%	3.00%				
T-Bills (Cash Equiv)	100%	7.58%				
Total Portfolio						

Investment Return Assumption

Step 3 - Develop a Range of Reasonableness - Example, not based on WRS

Investment	Investment Consultant Expected Nominal Return	Investment Consultant's Inflation Assumption	Expected Real Return $(2)-(3)$	Uniform Price Inflation Assumption	Gross Expected Nominal Return $\mathbf{(4) + (5) ~}$	Plan Incurred Expense Assumption	Expected Nominal Return Net of Expenses $(6)-(7)$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	6.42%	2.30%	4.12%	2.50%	6.62%	0.48%	6.14%
2	7.15%	3.00%	4.15%	2.50%	6.65%	0.48%	6.17%
3	6.96%	2.75%	4.21%	2.50%	6.71%	0.48%	6.23%
4	7.46%	3.01%	4.45%	2.50%	6.95%	0.48%	6.47%
5	7.15%	2.50%	4.65%	2.50%	7.15%	0.48%	6.67%
6	7.29%	2.50%	4.79%	2.50%	7.29%	0.48%	6.81%
7	7.58%	2.50%	5.08%	2.50%	7.58%	0.48%	7.10%
8	7.48%	2.40%	5.08%	2.50%	7.58%	0.48%	7.10%
9	7.69%	2.50%	5.19%	2.50%	7.69%	0.48%	7.21%
10	8.32%	2.30%	6.02%	2.50%	8.52%	0.48%	8.04%
11	8.57%	2.02%	6.55%	2.50%	9.05%	0.48%	8.57%
Average	$\mathbf{7 . 4 6 \%}$	$\mathbf{2 . 5 3 \%}$	$\mathbf{4 . 9 3 \%}$	$\mathbf{2 . 5 0 \%}$	$\mathbf{7 . 4 3 \%}$	$\mathbf{0 . 4 8 \%}$	$\mathbf{6 . 9 5 \%}$

Retirement
Consulting

Investment Return Assumption

Step 3 - Develop a Range of Reasonableness

- Arithmetic Mean
- "Expected Return"
- Expected return for each year standing alone
- Geometric Mean
- Average compounded annual return over time
- Always lower than Arithmetic Mean (in the real world)
- The compound return that is at the $50^{\text {th }}$ percentile of expectation

Investment Return Assumption - Example

Step 3 - Develop a Range of Reasonableness, Geometric vs. Arithmetic.

	Steady Return				Volatile Return		
	Beg of Yr	Return	End of Yr		Beg of Yr	Return	End of Yr
2016	$\$ 1,000$	7.50%	$\$ 1,075$		$\$ 1,000$	20.00%	$\$ 1,200$
2017	$\$ 1,075$	7.50%	$\$ 1,156$		$\$ 1,200$	-5.00%	$\$ 1,140$
2018	$\$ 1,156$	7.50%	$\$ 1,242$		$\$ 1,140$	20.00%	$\$ 1,368$
2019	$\$ 1,242$	7.50%	$\$ 1,335$		$\$ 1,368$	-5.00%	$\$ 1,300$
2020	$\$ 1,335$	7.50%	$\$ 1,436$		$\$ 1,300$	20.00%	$\$ 1,560$
2021	$\$ 1,436$	7.50%	$\$ 1,543$		$\$ 1,560$	-5.00%	$\$ 1,482$
2022	$\$ 1,543$	7.50%	$\$ 1,659$		$\$ 1,482$	20.00%	$\$ 1,778$
2023	$\$ 1,659$	7.50%	$\$ 1,783$		$\$ 1,778$	-5.00%	$\$ 1,689$
2024	$\$ 1,783$	7.50%	$\$ 1,917$		$\$ 1,689$	20.00%	$\$ 2,027$
2025	$\$ 1,917$	7.50%	$\$ 2,061$		$\$ 2,027$	-5.00%	$\$ \mathbf{1 , 9 2 5}$
Average Rate of Return							
Arithmetic	$\mathbf{7 . 5 0 \%}$					$\mathbf{7 . 5 0 \%}$	
Geometric	$\mathbf{7 . 5 0 \%}$				$\mathbf{6 . 7 7 \%}$		
Variance	$\mathbf{0 . 0 0 \%}$				$\mathbf{1 . 5 6 \%}$		
Std Dev	$\mathbf{0 . 0 0 \%}$				$\mathbf{1 2 . 5 0 \%}$		

A steady return produces a higher ending balance than a volatile return if the arithmetic average is the same. The geometric average reflects that behavior better than the arithmetic average. Basically, Volatility drags down return.

Investment Return Assumption

Step 3 - Develop a Range of Reasonableness

- Consider percentiles and probabilities of compounded returns
- The "Geometric Mean" is the $50^{\text {th }}$ percentile of compound returns
- Half the compounded returns are expected to exceed the $50^{\text {th }}$ percentile and half are expected to fall short
- The $50^{\text {th }}$ percentile return has a 50% probability of being achieved
- A return assumption higher than the 50 ${ }^{\text {th }}$ percentile of compounded returns will have less than a 50% chance of being achieved

Investment Return Assumption

Step 3 - Develop a Range of Reasonableness - Example, not based on WRS

Investment Consultant	Distribution of 15-Year Average Geometric Net Nominal Return			Probability of exceeding
	25th	$\mathbf{5 0 t h}$	$\mathbf{7 5 t h}$	$\mathbf{7 . 7 5 \%}$ *
(1)	(2)	(3)	(4)	(5)
1	3.77%	5.49%	7.25%	22.7%
2	3.77%	5.51%	7.29%	23.2%
3	4.01%	5.65%	7.32%	23.2%
4	4.10%	5.83%	7.59%	26.2%
5	4.33%	6.04%	7.77%	28.2%
6	4.20%	6.06%	7.95%	30.1%
7	4.59%	6.40%	8.23%	33.3%
8	5.08%	6.60%	8.15%	33.2%
9	4.84%	6.57%	8.33%	34.7%
10	6.07%	7.56%	9.08%	47.1%
11	5.65%	7.69%	9.76%	49.3%
Average	$\mathbf{4 . 5 8 \%}$	$\mathbf{6 . 3 1 \%}$	$\mathbf{8 . 0 7 \%}$	$\mathbf{3 1 . 9 \%}$

*Plan's current return assumption net of expenses.

Investment Return Assumption
 Step 4 Consider Range of Reasonableness and Professional Judgment

- To make the final decision on a return assumption --
- Consider the range between the two means (geometric and arithmetic)
- Consider professional judgment
- Consider a longer horizon, while being judged by stakeholders and other observers in a short/mid-term horizon
- Consider probabilities of achieving the selected assumption over the mid-term horizon
- Consider the uncertainty in the forecasts; in economics and investing, uncertainty usually provokes conservatism
- Consider avoiding large moves all at once

WRS Analysis - InVEstment Return and Risk

Objectives of WRS Analysis

- Commissioned by SWIB, presented at SWIB October 2017 Retreat
- Investigate
- Relationship of Investment Return to Success

Measures

- Effects of bad outcomes
- Evaluate several points along the Asset Allocation spectrum against measures of success.
- Find the "Goldilocks Zone" if it exists.

Asset Allocation and WRS

Measures of Successful Asset Allocation (WRS Perspective)

- Stable Contribution Rates
- Affordable Contribution Rates
- Generate Dividends (earnings > 5\%)
- Avoid Dividend Takebacks
- Maintain fully funded retiree reserve

Asset Allocation Spectrum

	Asset Allocation Characteristics	
Probability of	High Risk	Low Risk
Stable Contribution Rates	High Reward	Low Reward
Affordable Contribution Rates	Low	High
Generate Dividends	Medium	Low
Dividend Takebacks	High	Low
Maintain Fully Funded Retire Reserve	Medium	Medium
	Medium	High *

- An ideal Asset Allocation would provide stable, affordable contribution rates, generate dividends sufficient to offset inflation with no takebacks, and would maintain the retiree reserve in a fully funded position.
- There probably is no such thing, but is there a "Goldilocks Zone" that provides an optimal combined outcome of all the measures taken together?
* But not in the very long term

Key Changes from 2015 Study

- Combined SWIB returns for 2015 and 2016 slightly lower than assumed rate of 7.2% (-0.4\% return for 2015 and 8.29% return for 2016)
- Mortality table update (slightly longer expected lifetimes)
- Slightly lower Standard Deviation than 2015 Study
- Updated census data as of December 31, 2016

Retiree Reserve

- Retiree Reserve: Intended to hold exactly the right amount of money so that IF
- each person lives exactly the right number of years,
- and gets exactly the same benefit each year
- and the reserve earns exactly 5\% each year,
- Then the reserve will be exhausted the day the last person dies.

Dividend Reserve

- Retirees share in investment gains, but also share in investment losses. Prior dividends can be reduced if less than 5% is credited to the Core Annuity Division.
- Only dividends can be reduced. The original core benefit is protected.
- The present value of the excess of total core benefits over original benefits is called the "Dividend Reserve", although there is no formal definition of such a reserve.

Dividend Reserve

- A positive dividend reserve means that retirees are getting some inflation protection, but also provides a means by which the effect of investment losses on employer rates can be dampened.
- A \$0 dividend reserve means that retirees have lost all inflation protection and one of the shock absorbers on employer rates is gone.

Dividend Remaining (as a Percentage of Total Benefit) by Year of Retirement

Dividend Reserve Depletion

- The probability of such an event is low. Even 2008 did not produce depletion.
- In a low and volatile return market environment, realizing a return low enough to deplete the dividend reserve is more likely.
- The following slides explore in general terms what a deficit in the retiree reserve means for the System.

Dividend Reserve Depletion: Liability Attributable to Dividends

Valuation	Liability for Dividend Remaining (billions)	Liability for Dividend Adjustment (billions)	
$12 / 31 / 2010$	$\$ 7.2$		$\$(0.3)$
$12 / 31 / 2011$	6.4	(1.7)	
$12 / 31 / 2012$	4.5	(1.3)	
$12 / 31 / 2013$	3.0	2.0	
$12 / 31 / 2014$	4.6	1.3	
$12 / 31 / 2015$	5.5	0.2	
$12 / 31 / 2016$	5.4		1.0
$12 / 31 / 2017$ (est)	6.0		

- Liability for Dividend Remaining represents the value of all previously granted dividends
- If another market event similar to 2008 were to occur again, the complete depletion of the dividend would become a real possibility

Monte Carlo Simulations

- Based on 10,000 random trials
- Valuation Assumptions held constant
- Assumes seven sets of expected return/standard deviations (provided by SWIB Investment Consultant, NEPC)

$\xrightarrow{\text { Current }}$	Scenario 1 Scenario 2	Expected Return		Standard Deviation
		Geometric	Arithmetic	
		5.0\%	5.3\%	8.2\%
		6.0\%	6.5\%	11.4\%
	Scenario 3	7.0\%	7.9\%	15.2\%
	Scenario 4	7.2\%	8.2\%	16.0\%
	Scenario 5	8.0\%	9.4\%	19.4\%
	Scenario 6	9.0\%	11.1\%	24.1\%
	Scenario 7	10.0\%	13.1\%	29.5\%

Contribution as a \% of Payroll Scenario 2 - 6.0\%ER,11.4\%SD


```
5th Percentile 14.2% 13.9% 14.4% 15.0% 15.6% 16.1% 16.8% 17.1% 17.3% 17.5% 17.6%
25th Percentile 14.2% 13.9% 14.1% 14.6% 14.9% 15.2% 15.6% 15.8% 16.0% 16.1% 16.2%
    Median 14.2% 13.9% 14.0% 14.2% 14.4% 14.5% 14.6% 14.8% 14.9% 15.0% 15.1%
75th Percentile 14.2% 13.9% 13.8% 13.9% 13.8% 13.7% 13.6% 13.6% 13.7% 13.8% 13.9%
95th Percentile 14.2% 13.9% 13.6% 13.3% 12.9% 12.4% 11.9% 11.7% 11.6% 11.6% 11.8%
```

Retirement
Consulting

Dividend Rates Scenario 2 - 6.0\%ER,11.4\%SD

5th Percentile	-2.2%	-4.2%	-5.0%	-4.3%	-5.1%	-3.7%	-3.1%	-2.7%	-2.4%	-2.2%	-2.0%
25th Percentile	-0.1%	-1.8%	-2.0%	-1.1%	-1.6%	-1.0%	-0.8%	-0.6%	-0.5%	-0.4%	-0.4%
Median	1.3%	0.0%	-0.1%	1.0%	0.7%	0.7%	0.7%	0.8%	0.8%	0.8%	0.8%
75th Percentile	2.7%	1.8%	2.0%	3.2%	2.8%	2.5%	2.3%	2.2%	2.0%	2.0%	1.9%
95th Percentile	4.8%	4.5%	4.9%	6.3%	6.0%	5.0%	4.5%	4.2%	3.9%	3.7%	3.5%

Contribution as a \% of Payroll Scenario 3 - 7.0\%ER,15.2\%SD

5th Percentile	14.2%	13.9%	14.5%	15.2%	15.8%	16.5%	17.2%	17.5%	17.7%	17.8%	17.9%
25th Percentile	14.2%	13.9%	14.2%	14.6%	15.0%	15.3%	15.6%	15.8%	15.9%	16.0%	16.0%
Median	14.2%	13.9%	14.0%	14.2%	14.2%	14.3%	14.3%	14.4%	14.4%	14.4%	14.4%
75th Percentile	14.2%	13.9%	13.7%	13.7%	13.5%	13.2%	12.9%	12.7%	12.7%	12.7%	12.6%
95th Percentile	14.2%	13.9%	13.4%	12.9%	12.2%	11.3%	10.4%	9.9%	9.6%	9.4%	9.4%

Retirement
Consulting

Dividend Rates Scenario 3 - 7.0\%ER,15.2\%SD

5th Percentile	-3.2%	-5.3%	-6.1%	-5.5%	-6.3%	-4.3%	-3.5%	-2.9%	-2.5%	-2.3%	-2.0%
25th Percentile	-0.4%	-2.0%	-2.2%	-1.2%	-1.5%	-0.8%	-0.4%	-0.2%	0.0%	0.1%	0.2%
Median	1.5%	0.4%	0.4%	1.7%	1.5%	1.5%	1.7%	1.7%	1.7%	1.7%	1.7%
75th Percentile	3.4%	2.7%	3.2%	4.6%	4.4%	3.9%	3.7%	3.6%	3.4%	3.3%	3.2%
95th Percentile	6.2%	6.3%	7.1%	8.7%	8.6%	7.3%	6.6%	6.2%	5.9%	5.6%	5.3%

Contribution as a \% of Payroll Scenario 4 - 7.2\%ER,16.0\%SD

5th Percentile	14.2%	13.9%	14.5%	15.2%	15.9%	16.6%	17.3%	17.6%	17.8%	17.9%	17.9%
25th Percentile	14.2%	13.9%	14.2%	14.6%	15.0%	15.3%	15.6%	15.8%	15.9%	15.9%	16.0%
Median	14.2%	13.9%	14.0%	14.1%	14.2%	14.3%	14.3%	14.3%	14.3%	14.3%	14.3%
75th Percentile	14.2%	13.9%	13.7%	13.6%	13.4%	13.0%	12.7%	12.6%	12.5%	12.4%	12.3%
95th Percentile	14.2%	13.9%	13.4%	12.8%	12.0%	11.1%	10.1%	9.5%	9.1%	8.9%	8.9%

Retirement
Consulting

Dividend Rates Scenario 4 - 7.2\%ER,16.0\%SD

5th Percentile	-3.4%	-5.6%	-6.4%	-5.7%	-6.6%	-4.5%	-3.6%	-3.0%	-2.5%	-2.3%	-2.0%
25th Percentile	-0.5%	-2.1%	-2.3%	-1.2%	-1.5%	-0.7%	-0.4%	-0.1%	0.1%	0.2%	0.3%
Median	1.5%	0.4%	0.5%	1.8%	1.7%	1.7%	1.8%	1.9%	1.9%	1.9%	1.9%
75th Percentile	3.5%	2.9%	3.5%	4.8%	4.7%	4.2%	4.0%	3.8%	3.7%	3.6%	3.5%
95th Percentile	6.5%	6.7%	7.6%	9.2%	9.1%	7.7%	7.0%	6.7%	6.3%	6.0%	5.7%

Retirement
Consulting

Discussion of Dividend

Probability That Dividend Reserve Will Be Depleted in Year

$\xrightarrow{*}$		Expected	Standard	Year				
	ROR	Deviation	1	5	10	20	50	
1	5.0%	8.2%	0.0%	12.5%	22.7%	30.0%	39.6%	
2	6.0%	11.4%	0.0%	15.4%	17.6%	12.4%	3.9%	
3	7.0%	15.2%	0.0%	18.2%	16.4%	7.7%	0.9%	
4	7.2%	16.0%	0.0%	18.7%	16.4%	7.3%	0.6%	
5	8.0%	19.4%	0.0%	20.9%	16.7%	6.5%	0.4%	
6	9.0%	24.1%	0.3%	23.2%	18.0%	6.6%	0.3%	
7	10.0%	29.5%	0.9%	26.2%	20.0%	7.5%	0.4%	

Discussion of Dividend

Probability of Negative Dividend in Year

$\xrightarrow{ }$| | Expected
 ROR | Standard | | Year | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1 | 5 | 10 | 20 | 50 | | | |
| 1 | 5.0% | 8.2% | 23.2% | 52.7% | 55.8% | 54.4% | 52.5% | | |
| 2 | 6.0% | 11.4% | 26.6% | 42.0% | 33.1% | 28.8% | 28.1% | | |
| 3 | 7.0% | 15.2% | 29.5% | 37.1% | 23.2% | 18.5% | 18.8% | | |
| 4 | 7.2% | 16.0% | 29.9% | 36.5% | 22.0% | 17.3% | 17.8% | | |
| 5 | 8.0% | 19.4% | 31.7% | 34.8% | 19.2% | 14.5% | 14.9% | | |
| 6 | 9.0% | 24.1% | 33.5% | 34.3% | 17.4% | 12.7% | 13.3% | | |
| 7 | 10.0% | 29.5% | 34.9% | 35.0% | 17.2% | 12.5% | 13.1% | | |

Discussion of Dividend

Worst Case Scenario of Cumulative Dividend Percent (\% of Floor Benefit That Is Funded)

$\xrightarrow{*}$		Expected	Standard	Year				
	ROR	Deviation	1	5	10	20	50	
1	5.0%	8.2%	109%	88%	81%	76%	66%	
	6.0%	11.4%	108%	81%	76%	77%	84%	
3	7.0%	15.2%	106%	74%	69%	76%	103%	
4	7.2%	16.0%	106%	72%	68%	75%	108%	
5	8.0%	19.4%	105%	65%	61%	72%	122%	
6	9.0%	24.1%	103%	55%	51%	65%	136%	
7	10.0%	29.5%	100%	44%	39%	55%	141%	

Worst Case Scenario based on $1^{\text {st }}$ Percentile (i.e., 1% probability)

Dividend Observations

- The low risk scenarios are actually risky in the sense that, for example, 5% expected return has much higher chance of dividend depletion in later years than higher risk scenarios
- Must balance short and long term volatility
- Consider probability of dividend depletion
- Consider level of worst case scenario that is acceptable

Combination of All Scenarios

2027 Results by \%-tile of Investment Return Outcomes

	ROR		StdDev	Contribution Rates			Dividend Rates			Retiree FS 5th Percentile 76\% in year 50	
			95th	50th	5th	95th	50th	5th			
	1	5.0\%		8.2\%	13.6\%	15.8\%	17.5\%	1.7\%	-0.2\%		-2.2\%
$\xrightarrow{\text { Current }}$	2	6.0\%	11.4\%	11.8\%	15.1\%	17.6\%	3.5\%	0.8\%	-2.0\%	88\% in year 10	
	2A	6.15\%	12.0\%	11.4\%	15.0\%	17.7\%	3.8\%	0.9\%	-2.0\%	87\% in year 10	
	3	7.0\%	15.2\%	9.4\%	14.4\%	17.9\%	5.3\%	1.7\%	-2.0\%	85\% in year 10	
	4	7.2\%	16.0\%	8.9\%	14.3\%	17.9\%	5.7\%	1.9\%	-2.0\%	84\% in year 10	
	5	8.0\%	19.4\%	6.4\%	13.7\%	18.2\%	7.3\%	2.7\%	-2.1\%	80\% in year 10	
	6	9.0\%	24.1\%	2.7\%	13.0\%	18.6\%	9.4\%	3.6\%	-2.4\%	74% in year 10	
	7	10.0\%	29.5\%	0.0\%	12.3\%	19.2\%	11.6\%	4.4\%	-2.9\%	65\% in year 10	

- Lower assumed rates of return result in higher expected contributions and lower expected dividends
- Higher assumed rates of return are associated with higher standard deviation (i.e. risk) and $5^{\text {th }}$ Percentile scenario for retiree dividend pool falling below 80%
- Scenarios 2, 2A, 3 and 4 represent potential 'Goldilocks Zone’

Measures of Successful Asset Allocation (WRS Perspective)

- Stable Contribution Rates
- Affordable Contribution Rates
- Generate Dividends (earnings > 5\%)
- Avoid Dividend Takebacks
- Maintain fully funded retiree reserve

Continue to target 'Goldilocks zone' that provides for positive return with appropriate downside protection

Disclaimers

- This presentation shall not be construed to provide tax advice, legal advice or investment advice.
- Readers are cautioned to examine original source materials and to consult with subject matter experts before making decisions related to the subject matter of this presentation.
- This presentation expresses the views of the authors and does not necessarily express the views of Gabriel, Roeder, Smith \& Company.

